A Distributed Neural Network Training Method Based on Hybrid Gradient Computing
نویسندگان
چکیده
منابع مشابه
A conjugate gradient based method for Decision Neural Network training
Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...
متن کاملNeural Network Supervised Training Based on a Dimension Reducing Method
In this contribution a new method for supervised training is presented. This method is based on a recently proposed root finding procedure for the numerical solution of systems of non-linear algebraic and/or transcendental equations in mn. This new method reduces the dimensionality of the problem in such a way that it can lead to an iterative approximate formula for the computation of n 1 conne...
متن کاملA New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems
In this paper, two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS}) conjugate gradient method are presented to solve unconstrained optimization problems. A remarkable property of the proposed methods is that the search direction always satisfies the sufficient descent condition independent of line search method, based on eigenvalue analysis. The globa...
متن کاملRadial Basis Neural Network Based Islanding Detection in Distributed Generation
This article presents a Radial Basis Neural Network (RBNN) based islanding detection technique. Islanding detection and prevention is a mandatory requirement for grid-connected distributed generation (DG) systems. Several methods based on passive and active detection scheme have been proposed. While passive schemes have a large non detection zone (NDZ), concern has been raised on active method ...
متن کاملAsymptotics of Gradient-based Neural Network Training Algorithms
We study the asymptotic properties of the sequence of iterates of weight-vector estimates obtained by training a multilayer feed forward neural network with a basic gradient-descent method using a fixed learning constant and no batch-processing. In the onedimensional case, an exact analysis establishes the existence of a limiting distribution that is not Gaussian in general. For the general cas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scalable Computing: Practice and Experience
سال: 2020
ISSN: 1895-1767
DOI: 10.12694/scpe.v21i2.1727